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Abstract—Deep reinforcement learning (DRL) has gained sig-
nificant attention in recent years as a powerful approach for
solving complex optimization problems. One of the promising
applications of DRL in wireless communication is full-duplex
(FD) reconfigurable intelligent surface (RIS)-assisted wireless
systems, which have emerged as a potential solution for the next-
generation wireless communication networks. FD-RIS-assisted
systems can simultaneously transmit and receive data using
the same frequency band, which can significantly improve the
system capacity and spectral efficiency. This paper provides an
overview of the DRL background and its applications in FD-
RIS-assisted communication systems. It discusses recent research
advances in various scenarios, including resource allocation, sum-
rate optimization, and secure communications. Furthermore, it
investigates the DRL performance in optimizing large-scale FD-
RIS-assisted systems. Major challenges and shortcomings of DRL
in FD-RIS-assisted wireless systems are presented and supported
through numerical simulations. Based on this discussion, the
paper highlights prospective use cases that can bring the FD-
RIS-assisted systems into practice.

Index Terms—Reconfigurable intelligent surface, full-duplex,
deep reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of wireless communication
technologies, existing cellular generations are expected

to fail the demands of upcoming wireless systems. Therefore,
the sixth-generation (6G) wireless systems aims for hybrid
technologies that provide unprecedented capabilities, includ-
ing terabit data rates, microsecond latency, massive device
connectivity, and seamless machine learning integration [1].
Existing wireless systems use half-duplex (HD) communica-
tions, where transmission and reception occur separately. In
contrast, full-duplex (FD) communications allow simultaneous
transmission and reception within the same frequency band,
thus enabling two-fold spectral efficiency and substantially en-
hancing the throughput [2]. Despite the promising features of
FD communications, their operation properties impose several
implementation hurdles at the signal-detection levels. One of
the major challenges is self-interference (SI), which occurs
when a FD transceiver interferes with its own transmission.
The challenge in FD systems is to reduce the SI, such that the
receiver can accurately detect the incoming signal. This can be
achieved through a combination of propagation, analog, and
digital techniques [2]. The other challenge is the co-channel
interference (CCI), which is caused by multiple transmitters
operating on the same frequency band, leading to overlapping
transmissions.

The reconfigurable intelligent surface (RIS) has emerged as
a powerful technology for mitigating interference in wireless
systems. RIS consists of low-cost passive elements that are

independently controlled to manipulate the wavefront of the in-
coming signal, yielding reduced interference in FD communi-
cations. The reflection coefficients can be optimized along with
different parameters to maximize key performance metrics
such as the sum-rate and energy efficiency, while suppressing
the CCI interference. The FD operation has not been beneficial
in the case of severe CCI in conventional systems without
RIS. However, recent studies have demonstrated that FD-RIS-
assisted systems consistently achieve superior performance
when compared to HD systems, despite the CCI [3], [4].

Optimizing RIS systems efficiently is a key point to realiz-
ing the full potential of FD-RIS-assisted systems. Typically, al-
ternating optimization (AO) techniques are considered, which
have proven to achieve promising results. However, such
techniques require prior knowledge of the wireless commu-
nication environment, along with target-specific mathematical
relaxations to achieve near-optimal results. This might not be
feasible in dynamic environments. Moreover, these techniques
are not scalable. In contrast, deep reinforcement learning
(DRL) has evolved as a powerful tool for learning through
a trial-and-error approach. Therefore, it can efficiently learn
the optimal configuration of the RIS-assisted systems based
on the current conditions without the need for mathematical
relaxations [5].

Although DRL has been studied within the context of
HD wireless systems [5]–[7], its application to FD systems,
especially in multi-user environments, remains significantly
underexplored. This paper pioneers the investigation into the
use of DRL for optimizing FD-RIS-assisted systems, revealing
both novel challenges and the potential for substantial perfor-
mance improvements over traditional algorithms. Specifically,
the main contributions are summarized as follows:

• The paper proposes a DRL approach to maximize the
sum-rate of multi-user FD-RIS-assisted systems. The
results validate the DRL capability in optimizing large
state and action spaces, where it achieves near-optimal
solutions.

• The paper investigates the problem design challenge in
DRL for FD-RIS-assisted systems, where it illustrates
the impact of the problem formulation on the DRL
performance through simulation results.

• The paper further examines the computational complexity
of deep Q-learning (DQL) in the context of FD-RIS-
assisted systems, providing insights into the feasibility
of implementing DQL-based solutions in such systems.

Besides the main contributions, the paper explores recent re-
search advances in resource allocation, sum-rate optimization,
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and secure communications within FD-RIS-assisted systems.
Furthermore, the major challenges and shortcomings of DRL
in FD-RIS-assisted wireless systems are presented and sup-
ported by numerical simulations. The paper also highlights
prospective use cases that have the potential to bring the
FD-RIS-assisted systems into practice. To the best of the
authors knowledge, the literature lacks a holistic work of
this kind. Towards this end, the next section introduces the
powerful DRL tool and provides the distinction from the
current optimization tools. Section III details various FD-RIS-
assisted systems research advances and use cases. The paper
defines open challenges in Section IV. Finally, it recommends
potential research directions in Section V and concludes in
Section VI.

II. DRL FOR FD-RIS-AIDED WIRELESS SYSTEMS

A. Overview

DRL is a sub-field of machine learning that aims at learning
the optimal behavior in an environment through a trial-and-
error approach. Specifically, the DRL agent performs actions
in the dynamic environment and observes the feedback, en-
abling it to learn decisions that maximize the reward function
over time. Unlike supervised or unsupervised learning, DRL
provides a feedback signal to the agent that indicates whether
its behavior is good or bad, allowing it to adapt without the
need for a labeled dataset. This makes it suitable for com-
plex, dynamic, and uncertain environments, such as wireless
communication environments, where it may be practically
unattainable to specify an accurate solution.

A DRL problem can be identified using the following key
elements: state, action, reward, policy, and value function. The
state represents the current configuration of the environment.
The action represents the decisions that the agent aims to
optimize. The reward defines the goal of a DRL problem,
where the environment sends a scalar value (i.e., the reward) as
feedback to evaluate the action taken by the agent. The policy
maps the current state of the environment to actions. Depend-
ing on the problem, the policy can be expressed through a
lookup table, or it might require complex computations in
other instances. Specifically, the policy can be represented
by a neural network (NN) that takes the environment states
as inputs and approximates the actions. The value function
identifies the action evaluations on long-term goals.

The learning process of the DRL agent is formulated as
episodes and steps. An episode refers to a complete series of
interactions between the agent and the environment, from the
initial state to the terminal state. In each episode, the individual
actions taken by the agent represent the steps in response to
the current state. In each step, the agent chooses an action
to perform based on the environmental state and policy. It
observes the reward, and transitions to the next state. This
continuous interaction enables the agent to learn about the
environment properties and determine the optimal actions in
real-time. In wireless communications, a specific terminal state
may not naturally exist as in gaming tasks. Therefore, the
number of steps and episodes can be set as a fixed number,
allowing the learning process to continue until convergence is
achieved.

B. AO vs. DRL

The optimization of FD-RIS-assisted systems has been
extensively investigated in the literature using AO approaches.
However, such approaches pose several practical implemen-
tation challenges. Particularly, AO techniques demand well-
established prior mathematical models that vary depending on
the system model and objective function, which can be difficult
to attain in large-scale systems. It further restricts the objective
formulation to convex problems, requiring several relaxation
steps that can result in far sub-optimal solutions. Conversely,
DRL can handle non-linear, non-convex, and high-dimensional
problems without the need for prior mathematical relaxations.

Furthermore, DRL can learn to adapt to dynamic environ-
ments. The RIS-assisted wireless propagation environment can
vary due to different factors, such as the user equipments
(UEs) mobility, change in the number of UEs, presence of new
obstacles, weather fluctuations, and randomness of channel
state information (CSI). By updating the policy and adjust-
ing the RIS configuration according to the value function,
the agent becomes robust against system changes. Moreover,
DRL searches for the optimal strategy without the need for
prior knowledge of the propagation environment. In contrast,
conventional AO approaches may not be able to seamlessly
find the best decision in a probabilistic setting. It relies
on prior knowledge to achieve optimal performance and is
usually obtained through extensive measurements or mathe-
matical modeling. This poses several limitations to practical
deployments, including the need for accurate models, which
can be difficult to obtain in dynamic or complex propagation
environments.

Beyond the learning capabilities, DRL can optimize mul-
tiple objectives efficiently in different systems, including the
sum-rate, system power, and secrecy rate. In particular, DRL
only needs to design an appropriate reward function that
simultaneously optimizes multiple targets. In contrast, AO
techniques need to divide the problem into sub-problems and
iterate through the objectives until convergence. Given that
each sub-problem requires relaxations and assumptions about
the propagation environment, the running time and reliability
of the system cannot be maintained. Additionally, DRL is
particularly well-suited for FD systems because of its ability to
efficiently optimize the RIS configuration while dynamically
managing CCI, which can severely degrade the performance
if not properly managed.

III. RESEARCH ADVANCES

Due to the above features, DRL is envisioned to be powerful
for complex wireless systems, such as the optimization prob-
lems of FD-RIS-assisted networks. Figure 1 illustrates some
use cases of FD-RIS-assisted systems, which will be discussed
in the context of various optimization objectives later in this
section.

A. Single-user Sum-rate Optimization

Recently, DRL has emerged as a promising tool to optimize
the sum-rate of FD-RIS-assisted systems [8]–[11]. In what fol-
lows, the literature works are discussed based on the decision
parameters categorization: continuous and discrete.
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Fig. 1: FD-RIS-assisted communication system use cases.

1) Continuous Action Space: In [8], the authors investi-
gated the RIS-assisted multiple-input single-output (MISO)
single-user system, as shown in Fig. 1. Two operating modes
are considered: HD and FD. The goal is to optimize the
continuous RIS phase shifts and transmit beamformers to max-
imize the system-rate. The deep deterministic policy gradient
(DDPG) is leveraged for optimizing the RIS phase shifts as
it is well-suited for continuous action spaces. The DDPG
consists of two main networks: actor and critic. The former
learns a deterministic policy, which maps the state directly to
an action value. The latter learns to approximate the action-
value function, estimating the expected total reward starting
from a given state and following a given policy. Both networks
are implemented using deep NN (DNN).

Furthermore, the DDPG uses experience replay and target
networks to best learn the optimal policy through interaction
with the wireless environment. The experience replay stores
transitions from previous experiences, and the target network
is used to stabilize the training process. The experience,
represented by the state, action, reward, and next state, is
stored in the experience replay. The agent randomly chooses
a batch of transitions from the experience replay to update the
networks. The process is repeated for a number of episodes
and steps until convergence. In [8], the state space included
the RIS continuous phase shifts and reward function, the action
included the RIS phase shifts, and the reward was defined by
the problem goal (i.e., the sum-rate function). To this end, the
DDPG algorithm architecture is shown in Fig. 2a. The work in
[8] showed that the DRL algorithm remarkably enhances the
system-rate, in both HD and FD modes, compared to the non-
optimized case using a unified DRL parameter setting. Further-
more, the work in [9] investigated the single and distributed
RIS deployment schemes in an FD-RIS-assisted MISO system.
The target was to maximize the sum-rate by optimizing the
beamformers and continuous RIS phase shifts to investigate
the preference of deploying a single or distributed RIS using
three practical scenarios. The paper showed that the DDPG can
be efficiently deployed to optimize decision parameters based
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Fig. 3: DDPG performance in multi-user FD-RIS-assisted
system. UEs: 8, antennas at the BS: 8, experience replay size:
100, 000, batch size: 16, discount factor: 0.99, learning rate:
0.001, soft update: 0.001, episodes: 500, and steps: 8000.

on different system settings. The work in [12] investigated
the sum-rate maximization problem of an FD-RIS-assisted
vehicular communication system. The paper demonstrated that
DRL can mitigate residual SI and CCI issues in FD systems,
thereby facilitating more reliable FD-RIS-assisted networks in
vehicular settings.

2) Discrete Action Space: Beyond the continuous system
setting, few works considered a practical (i.e., discrete) RIS
phase shift model to combat the hardware limitations of
the continuous model. DQL is one of the powerful DRL
frameworks that can be used efficiently to optimize discrete
action spaces. The work in [11] considered a distributed
RIS-assisted two-way single-user communication system as
illustrated in Fig. 1, where the discrete phase shifts restriction
at the RIS is investigated. The goal was to maximize the sum-
rate by optimizing the beamformers and discrete RIS phase



4

shifts. As there exist closed-form mathematical solutions for
the beamformers, the paper leveraged DQL for the phase shift
optimization. DQL has the ability to handle high-dimensional
state spaces using DNN and to learn optimal policies without
comprehending the system dynamics. It aims at approximating
the Q-function, which estimates the value of each action in a
given state. Typically, the agent chooses the action that has the
maximum Q-value. However, the agent also chooses random
actions to prevent saturating at a local minimum. The structure
of the DQL algorithm is shown in Fig. 2b. The paper proved
the practicality of DQL in such use case, where it almost
achieved the continuous phase shift model performance with
only a resolution of 6 bits.

Having discussed different algorithms to maximize the same
objective, one can observe that choosing an appropriate DRL
algorithm for FD RIS-assisted systems is important, which
depends critically on the characteristics and requirements of
the problem. Specifically, Q-learning is well-suited for envi-
ronments with a discrete action space. However, Q-learning
can struggle with high-dimensional state and/or action spaces
because it requires a lookup table to find the optimal solution.
DQL extends Q-learning by using a DNN to approximate
the Q-value function, thus enabling the handling of large-
scale environments. The DDPG is designed to operate over
continuous action spaces and is ideal for scenarios where
actions require continuous tuning, such as power levels or
beamformers in FD systems.

B. Proposed DRL Algorithm for Multi-user Sum-rate Opti-
mization

In multi-user wireless systems, the action and state spaces
are typically high-dimensional, making it difficult to achieve
optimal solutions using AO techniques. However, the DDPG
can handle large state and action spaces using DNN, expe-
rience replay, and target networks. The actor-network maps
the current state to a continuous action space, allowing it
to handle different decision parameters, including continuous
RIS phase shifts, beamformers, and power in FD-RIS-assisted
communication systems. All of the literature work only in-
cluded one decision parameter in the action space (i.e., the
RIS phase shifts). Since there are no mathematical closed-
form solutions for optimizing the beamformers in multi-
user communication systems, powerful algorithms that achieve
near-optimal performance should be developed.

To validate the performance of the DDPG in FD-RIS-
assisted systems, we investigate the sum-rate optimization
of a multi-user FD-RIS-assisted system. We jointly opti-
mize the continuous RIS phase shifts and beamformers to
maximize the system sum-rate. The optimization problem is
challenging due to the multi-user interference, in addition
to the extended state and action scales. Therefore, the DRL
formulation should be designed accurately, along with several
performance improvement techniques. The construction of the
action, state, and reward is as follows: The action space
contains the beamforming matrix and RIS phase shifts. The
state is determined by the transmission power, received power
of UEs, action from the previous step, and CSI. We consider
the reward function to be the difference between the previous

and current step sum-rate to encourage the agent to improve its
performance by receiving positive rewards for a rate increase
and negative rewards otherwise. The actor and critic networks
have an input layer, a hidden layer, and an output layer.
The actor-network hidden layer is modeled as long short-term
memory, while the critic-network hidden layer is modeled as
a feedforward network. Input sizes correspond to state space
and concatenated action/state spaces, respectively. The actor-
network output matches the action space, while the critic-
network has one neuron. Both networks hidden layer consist
of 512 neurons with tanh activation function. All complex-
valued parameters are separated as real and imaginary parts
and fed into the DNN independently. Moreover, to enhance the
efficiency of the function approximation, the state is whitened
prior to passing it to both the critic and actor networks. Batch
normalization is also applied at the hidden layers to stabilize
the system output.

Figure 3 shows the DDPG sum-rate performance com-
pared to the number of reflecting elements. The algorithm
proposed in [9] is included as a benchmark for comparison
in the single-user FD setting. In [9], the DDPG is adopted
to optimize the RIS phase shifts, and two formulations of
closed-form derivations are used to optimize the beamform-
ers: exact and approximate solutions. As can be observed
in the two-way communication setting, the proposed joint
optimization achieves near-optimal performance efficiently,
and it outperforms the approximate closed-form solutions. It
further shows that the gap between the exact closed-form
solution and the DRL joint optimization decreases as the
number of RIS elements increases. It is worth noting that
the proposed DDPG approximates the beamformers and RIS
phase shifts jointly without the need to iterate through two
sub-problems (i.e., phase shift optimization using DRL and
beamformers optimization using closed-form solutions). The
simulation result proves that the DDPG can be efficiently
exploited to optimize various scenarios, given the accurate
DRL design and enhancement techniques.

C. System Resource Optimization

Besides the sum-rate maximization problems, the DRL
approaches can be applied to various objectives and setups.
Particularly, the work in [13] considered minimizing the FD-
RIS-assisted system resources by optimizing the discrete RIS
phase shifts and their states (either ON or OFF). Assuming
that all RIS elements are constantly ON can lead to significant
resource wastage, as all practical applications function at a
specific target rate. This assumption in practice results in
higher power usage, channel estimation efforts, and resources
for optimizing phase shifts. Therefore, the authors considered
the deployment of the DQL to minimize the system resources
by optimizing two discrete action spaces, the discrete RIS
phase shifts and their states.

Consequently, the DRL formulation would be approached
differently than the above formulations. The reward function
cannot be simply based on the objective function. From the
agent perspective, the goal is to select actions that maximize
the cumulative reward, which may result in activating most
elements and surpassing the target sum-rate. Therefore, to
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ensure the optimal number of active elements that achieves
the system target rate are selected, the reward function should
incorporate the target rate constraint. Hence, the reward func-
tion is designed using a combination of punishment and
encouragement strategies. Negative rewards are applied if the
agent does not meet the target rate constraint, while positive
rewards are assigned when it meets the target rate constraint
and enhances the rate based on prior feedback. It is shown in
the paper that the DQL algorithm effectively satisfies the target
rate and deactivates a considerable number of RIS elements.
This proves that the DQL is applicable to different scenarios,
each with its own target rate requirements.

D. Secrecy Rate Optimization

In addition to the above formulations, RISs can decrease the
data rate at eavesdroppers while augmenting the data rate at
legitimate receivers, thus improving the overall secrecy rate.
Incorporating the FD technology in the RIS-assisted commu-
nication provides the possibility of enhancing the physical
layer security, where it is challenging for the eavesdropper
to decode the signal. Therefore, optimizing secrecy rates and
RIS design in an FD communication setting is of paramount
importance. The work in [14] proposed a DRL-based approach
for RIS-aided multi-user FD secure systems under hardware
impairments, as shown in Fig. 1. The paper considered a
practical scenario where the RIS is equipped with continuous
phase shifts that suffer from quantization errors and mutual
coupling between the phase shifts. The proposed DRL algo-
rithm takes these hardware impairments into account while
jointly optimizing the RIS phase shifts and beamformers.
The results demonstrated that the developed DRL approach
can effectively enhance the system sum secrecy rate and
outperforms existing baseline schemes.

IV. CHALLENGES

A. Problem Design

DRL has exhibited outstanding performance in various RIS-
assisted wireless applications. Yet, developing an effective
DRL algorithm is a challenging task that involves designing
an accurate problem formulation that suits the capabilities of
the DRL algorithms. The complexity of the communication
system and the limitations of the DRL algorithm, such as the
exploration-exploitation trade-off and the curse of dimension-
ality, can impose several implementation hurdles. Therefore,
developing an optimal problem design that can leverage the
strengths of DRL algorithms and overcome their limitations
is vital to achieving the desired performance in FD-RIS-
assisted systems. Fig. 4 illustrates the importance of a proper
reward design in achieving the target rate. The simulation
result considers the system model and problem formulation
presented in Sec. III-C, in which the target rate is set to
10 bps/Hz. Two reward designs are investigated in addition to
the design proposed in [13], denoted by Case 1. The agent
is considered to have satisfied the target rate constraint if
the sum-rate exceeds the target rate but remains less than
the upper bound, which is defined as target rate + 1. Case 2
assumes a smaller target rate upper bound, of 0.5 instead of
1. Case 3 excludes the negative penalty from [13], leaving the
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Fig. 4: The impact of the reward design on the performance.

agent to learn from the two extremes. Although the reward
designs are not technically wrong, the agent fails to satisfy the
objective of the problem with improper reward designs. This
not only impacts the overall performance but also significantly
hinders the convergence of the DRL algorithm, delaying or
even preventing it from reaching an optimal solution. Con-
sequently, the reward design should be carefully tailored to
the constraints and operational dynamics of FD-RIS-assisted
systems, considering factors such as interference management,
power efficiency, and real-time adaptation capabilities.

B. Computational Complexity

DRL has emerged in different fields by tackling complex
and large-scale problems efficiently. A notable example is
the AlphaGo project, developed by DeepMind Technologies,
which used DNNs and Monte Carlo tree search algorithms
to master the game of Go [15]. In 2016, AlphaGo competed
against the world champion and won four games, marking a
milestone in the development of artificial intelligence. How-
ever, a single game of AlphaGo required 1,920 central process-
ing units and 280 graphics processing units with an estimated
cost of $35,000,000. Given the large parameter space, and
the lack of solid complexity analysis in existing literature,
the question of whether we can fulfill the computational
requirements of DRL deployments in large-scale RIS-assisted
systems remains an open challenge that needs to be addressed.
However, despite the extensive memory requirements, DRL
algorithms are able to perform decision-making with minimal
latency during the testing phase, similar to traditional algo-
rithms, ensuring that real-time responsiveness is maintained
even in complex environments.

Figure 5 shows the impact of increasing the number of
RIS elements on the complexity of the DQL algorithm. The
NN parameters and simulation settings are based on [11]. As
observed, the time complexity, which is based on the total
number of episodes and steps, is constant even for larger
numbers of reflecting elements. The number of additions and
multiplications increases slightly as the number of reflecting
elements increases. In contrast, the space complexity of DQL
(i.e., represented by the number of parameters) increases
rapidly as the number of reflecting elements increases. The
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Fig. 5: The impact of increasing the number of RIS elements
on DQL complexity.

network evaluates the Q-value for each possible action, which
is computationally expensive and can increase the memory
requirements of the algorithm.

V. PROSPECTIVE RESEARCH DIRECTIONS

Having detailed the research trends and challenges of DRL
in FD-RIS-assisted communications, the paper now discusses
a few prospective use cases that are not yet investigated in the
literature.

A. Large-scale FD-RIS-assisted Communication Systems

Although some of the practical FD settings are investigated
in the literature, there are several important problems that
remain an open challenge. Most of the investigated problems
considered a single-user simulation setting, which enabled
the action and state spaces (either continuous or discrete)
to be consistent. However, when considering mixed decision
parameters, effective DRL algorithms and techniques should
be developed to achieve optimal performance. An example
of a mixed optimization problem is the joint optimization of
discrete variables (e.g., discrete RIS phase shifts and states)
and continuous variables (e.g., power and beamformers). Sev-
eral techniques have emerged in the field of DRL to tackle
such problems. For example, hybrid DDPG can be considered,
which combines both the DDPG and DQL algorithms to
respectively handle continuous and discrete actions in a unified
framework. The continuous actions are learned using the
DDPG algorithm, which uses an NN to represent the policy.
The discrete actions are learned using DQL, which employs a
separate NN to represent the Q-function.

Furthermore, integrating large language models (LLMs)
with DRL in large-scale systems offers a robust approach
to managing the complex relations and numerous network
elements. Specifically, LLMs can be used to dynamically
adjust the reward functions used in DRL, based on the
current network state or desired target, such as minimiz-
ing interference or maximizing throughput. They can also
help in translating complex network optimization tasks into
DRL objectives by interpreting the technical specifications
and constraints described in network policy. By blending the
power of LLMs with the adaptive learning capabilities of

DRL, networks can achieve higher levels of optimization and
operational efficiency, which is crucial for handling the scale
and complexity of future wireless networks.

B. Meta-reinforcement Learning (MRL)

Despite remarkable developments, traditional RL methods
cannot quickly adapt to new tasks using prior knowledge.
In MRL, agents are designed to leverage prior experience
on similar tasks. MRL focuses on learning to learn. There
are key components that differentiate RL from MRL, which
are summarized as follows: MRL needs to use a model with
memory to acquire and store knowledge about the current
task from the immediate environment, which would help to
update its hidden state. Furthermore, a MRL algorithm defines
how the model weights are updated based on what it learned.
The main objective of the algorithm is to help optimize the
model to solve an unseen task in the minimum amount of time,
applying the prior knowledge. The MRL system includes the
last reward and action in the policy observation along with the
current state. The purpose of this is to feed and keep track of
the history of all tasks and observations so that the model can
internally update the dynamics between the states, actions, and
rewards based on the current configuration. This approach is
particularly useful when data availability is limited, as it allows
the agent to efficiently use the available data by building upon
prior knowledge and adapting quickly to new tasks.

C. Quantum DRL (Q-DRL)

Q-DRL represents a cutting-edge fusion of quantum me-
chanics theories and DRL approaches. It employs quantum
mechanics principles, such as superposition and entanglement,
to tackle complex decision-making problems efficiently in
large-scale probabilistic environments. In FD-RIS systems,
efficient resource allocation, beamforming, and interference
management are essential for enhancing the performance. The
Q-DRL leverages the quantum properties of qubits to explore
the vast solution space more efficiently. Besides the scalability
advantage, the Q-DRL can tackle the limitations of the clas-
sical DRL algorithms. Specifically, classical DRL algorithms
often struggle to strike the balance between exploitation and
exploration. Q-DRL benefits from its ability to explore multi-
ple actions concurrently, which leads to a stable environment
exploration. Similarly, the experience replay in classical DRL
involves sampling past transitions to train the agent. Selecting
the training samples plays a key role in the agent learning
process. Q-DRL can exploit quantum parallelism to examine
multiple experiences simultaneously, thus speeding up the
training process effectively, which is particularly useful for
FD-RIS-assisted systems.

D. DRL for FD-RIS-Assisted Integrated Sensing and Commu-
nications (ISAC)

ISAC has emerged as an important function for the 6G
wireless networks. Many practical applications not only re-
quire high-quality communication but also need simultaneous
localization with high precision. Therefore, the concept of
ISAC was invented to best use the system resources (e.g.,
spectrum, energy, and hardware) through shared sensing and
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communication (SAC) functions. Incorporating RIS technolo-
gies into ISAC systems provides more degrees of freedom and
optimized performance through RIS phase shift optimization.
Therefore, by jointly designing the RIS phase shifts, beam-
formers, and power using DRL approaches, one may leverage
the RIS capabilities to facilitate efficient ISAC transmission.
The use of RIS in FD-based ISAC systems not only enhances
SAC performance but also plays a crucial role in managing
the potential interference inherent in FD operations, such as
SAC interference and CCI between simultaneous downlink
and uplink transmissions.

In addition to the benefits of RIS in ISAC systems, the
application of DRL extends beyond conventional RIS types
to other variants such as simultaneous transmit and reflect
RIS (STAR-RIS), which offer enhanced capabilities. STAR-
RIS, not only tunes phase shifts but also divides signals into
separate paths, aligning perfectly with the dual demands of
ISAC for high-precision localization and robust communica-
tion. The integration of DRL with STAR-RIS and other RIS
configurations such as hybrid and active RIS, each providing
unique advantages in signal control and manipulation, could
further revolutionize FD operation modes in ISAC systems.
DRL capability to dynamically adapt and optimize the allo-
cation of resources in real-time becomes crucial in exploiting
these RIS functionalities.

E. Non-terrestrial Networks (NTNs)

The vision for 6G marks an evolution from wireless stan-
dards, transitioning from ground-based coverage to an inte-
grated approach that includes aerial technologies. Utilizing
NTNs is essential to achieve global connectivity, and intro-
duces promising prospects for FD communications.

In aerial networks, the difference in power levels between
transmitted and received signals tend to be smaller than that
of ground-based systems due to shorter transmission distances.
This reduced power imbalance at low altitudes enables com-
bating the SI issue of FD communications, thus enhancing the
network performance. Building on the advancements of NTNs
and FD communications at lower altitudes, the integration of
RIS can enable more precise control of signal paths to enhance
signal quality. Furthermore, RIS is expected to be one of the
most cost-efficient solutions to address NTNs practical issues
including overload power consumption and high probability of
blockage. However, the movement of aerial terminals and the
dynamic nature of NTNs pose considerable implementation
challenges. Hence, integrating space segments with terrestrial
networks would require thorough planning. DRL presents a
promising solution to address the inherent challenges posed
by the mobility of aerial platforms, such as time-varying
interference patterns. It can adaptively learn and optimize
network parameters in real-time, making it ideal for managing

the dynamic environmental conditions encountered in aerial
networks.

VI. CONCLUSION

This paper provided a holistic overview of the application
of DRL to FD-RIS-assisted systems. It highlighted the main
positive aspects of DRL as compared to the traditional opti-
mization methods. Furthermore, it defined multiple research
advances that are critical for exploiting the DRL capabilities
in optimizing FD-RIS-assisted systems. It further investigated
the scalability of DRL algorithms in optimizing multi-user FD-
RIS-assisted systems. Some of the key challenges that face
the implementation of DRL were discussed and supported
through numerical simulations. Finally, the paper advocated
for potential research directions that should be investigated to
realize the full potential of DRL in FD-RIS-assisted wireless
communication systems in the near future.
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